Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 152
1.
Mov Disord ; 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38532269

BACKGROUND: Re-emergent tremor is characterized as a continuation of resting tremor and is often highly therapy refractory. This study examines variations in brain activity and oscillatory responses between resting and re-emergent tremors in Parkinson's disease. METHODS: Forty patients with Parkinson's disease (25 males, mean age, 66.78 ± 5.03 years) and 40 age- and sex-matched healthy controls were included in the study. Electroencephalogram and electromyography signals were simultaneously recorded during resting and re-emergent tremors in levodopa on and off states for patients and mimicked by healthy controls. Brain activity was localized using the beamforming technique, and information flow between sources was estimated using effective connectivity. Cross-frequency coupling was used to assess neuronal oscillations between tremor frequency and canonical frequency oscillations. RESULTS: During levodopa on, differences in brain activity were observed in the premotor cortex and cerebellum in both the patient and control groups. However, Parkinson's disease patients also exhibited additional activity in the primary sensorimotor cortex. On withdrawal of levodopa, different source patterns were observed in the supplementary motor area and basal ganglia area. Additionally, levodopa was found to suppress the strength of connectivity (P < 0.001) between the identified sources and influence the tremor frequency-related coupling, leading to a decrease in ß (P < 0.001) and an increase in γ frequency coupling (P < 0.001). CONCLUSIONS: Distinct variations in cortical-subcortical brain activity are evident in tremor phenotypes. The primary sensorimotor cortex plays a crucial role in the generation of re-emergent tremor. Moreover, oscillatory neuronal responses in pathological ß and prokinetic γ activity are specific to tremor phenotypes. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

2.
Neurobiol Dis ; 194: 106462, 2024 May.
Article En | MEDLINE | ID: mdl-38442845

DYT-TOR1A (DYT1) dystonia, characterized by reduced penetrance and suspected environmental triggers, is explored using a "second hit" DYT-TOR1A rat model. We aim to investigate the biological mechanisms driving the conversion into a dystonic phenotype, focusing on the striatum's role in dystonia pathophysiology. Sciatic nerve crush injury was induced in ∆ETorA rats, lacking spontaneous motor abnormalities, and wild-type (wt) rats. Twelve weeks post-injury, unbiased RNA-sequencing was performed on the striatum to identify differentially expressed genes (DEGs) and pathways. Fenofibrate, a PPARα agonist, was introduced to assess its effects on gene expression. 18F-FDG autoradiography explored metabolic alterations in brain networks. Low transcriptomic variability existed between naïve wt and ∆ETorA rats (17 DEGs). Sciatic nerve injury significantly impacted ∆ETorA rats (1009 DEGs) compared to wt rats (216 DEGs). Pathway analyses revealed disruptions in energy metabolism, specifically in fatty acid ß-oxidation and glucose metabolism. Fenofibrate induced gene expression changes in wt rats but failed in ∆ETorA rats. Fenofibrate increased dystonia-like movements in wt rats but reduced them in ∆ETorA rats. 18F-FDG autoradiography indicated modified glucose metabolism in motor and somatosensory cortices and striatum in both ∆ETorA and wt rats post-injury. Our findings highlight perturbed energy metabolism pathways in DYT-TOR1A dystonia, emphasizing compromised PPARα agonist efficacy in the striatum. Furthermore, we identify impaired glucose metabolism in the brain network, suggesting a potential shift in energy substrate utilization in dystonic DYT-TOR1A rats. These results contribute to understanding the pathophysiology and potential therapeutic targets for DYT-TOR1A dystonia.


Dystonia , Dystonic Disorders , Fenofibrate , Rats , Animals , Dystonia/genetics , Dystonia/metabolism , Rodentia/metabolism , Fluorodeoxyglucose F18 , PPAR alpha/metabolism , Dystonic Disorders/genetics , Brain/metabolism , Energy Metabolism , Glucose
3.
Neurobiol Dis ; 193: 106453, 2024 Apr.
Article En | MEDLINE | ID: mdl-38402912

DYT-TOR1A dystonia is the most common monogenic dystonia characterized by involuntary muscle contractions and lack of therapeutic options. Despite some insights into its etiology, the disease's pathophysiology remains unclear. The reduced penetrance of about 30% suggests that extragenetic factors are needed to develop a dystonic phenotype. In order to systematically investigate this hypothesis, we induced a sciatic nerve crush injury in a genetically predisposed DYT-TOR1A mouse model (DYT1KI) to evoke a dystonic phenotype. Subsequently, we employed a multi-omic approach to uncover novel pathophysiological pathways that might be responsible for this condition. Using an unbiased deep-learning-based characterization of the dystonic phenotype showed that nerve-injured DYT1KI animals exhibited significantly more dystonia-like movements (DLM) compared to naive DYT1KI animals. This finding was noticeable as early as two weeks following the surgical procedure. Furthermore, nerve-injured DYT1KI mice displayed significantly more DLM than nerve-injured wildtype (wt) animals starting at 6 weeks post injury. In the cerebellum of nerve-injured wt mice, multi-omic analysis pointed towards regulation in translation related processes. These observations were not made in the cerebellum of nerve-injured DYT1KI mice; instead, they were localized to the cortex and striatum. Our findings indicate a failed translational compensatory mechanisms in the cerebellum of phenotypic DYT1KI mice that exhibit DLM, while translation dysregulations in the cortex and striatum likely promotes the dystonic phenotype.


Dystonia , Dystonic Disorders , Mice , Animals , Dystonia/genetics , Gene-Environment Interaction , Dystonic Disorders/genetics , Corpus Striatum/metabolism , Genetic Predisposition to Disease
4.
Diagnostics (Basel) ; 14(4)2024 Feb 13.
Article En | MEDLINE | ID: mdl-38396447

OBJECTIVE: Biological motion perception (BMP) correlating with a mirror neuron system (MNS) is attenuated in underage individuals with autism spectrum disorder (ASD). While BMP in typically-developing controls (TDCs) encompasses interconnected MNS structures, ASD data hint at segregated form and motion processing. This coincides with less fewer long-range connections in ASD than TDC. Using BMP and electroencephalography (EEG) in ASD, we characterized directionality and coherence (mu and beta frequencies). Deficient BMP may stem from desynchronization thereof in MNS and may predict social-communicative deficits in ASD. Clinical considerations thus profit from brain-behavior associations. METHODS: Point-like walkers elicited BMP using 15 white dots (walker vs. scramble in 21 ASD (mean: 11.3 ± 2.3 years) vs. 23 TDC (mean: 11.9 ± 2.5 years). Dynamic Imaging of Coherent Sources (DICS) characterized the underlying EEG time-frequency causality through time-resolved Partial Directed Coherence (tPDC). Support Vector Machine (SVM) classification validated the group effects (ASD vs. TDC). RESULTS: TDC showed MNS sources and long-distance paths (both feedback and bidirectional); ASD demonstrated distinct from and motion sources, predominantly local feedforward connectivity, and weaker coherence. Brain-behavior correlations point towards dysfunctional networks. SVM successfully classified ASD regarding EEG and performance. CONCLUSION: ASD participants showed segregated local networks for BMP potentially underlying thwarted complex social interactions. Alternative explanations include selective attention and global-local processing deficits. SIGNIFICANCE: This is the first study applying source-based connectivity to reveal segregated BMP networks in ASD regarding structure, cognition, frequencies, and temporal dynamics that may explain socio-communicative aberrancies.

6.
Eur J Neurol ; 31(4): e16201, 2024 Apr.
Article En | MEDLINE | ID: mdl-38235854

BACKGROUND AND PURPOSE: Resting-state electroencephalography (EEG) holds promise for assessing brain networks in amyotrophic lateral sclerosis (ALS). We investigated whether neural ß-band oscillations in the sensorimotor network could serve as an objective quantitative measure of progressive motor impairment and functional disability in ALS patients. METHODS: Resting-state EEG was recorded in 18 people with ALS and 38 age- and gender-matched healthy controls. We estimated source-localized ß-band spectral power in the sensorimotor cortex. Clinical evaluation included lower (LMN) and upper motor neuron scores, Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised score, fine motor function (FMF) subscore, and progression rate. Correlations between clinical scores and ß-band power were analysed and corrected using a false discovery rate of q = 0.05. RESULTS: ß-Band power was significantly lower in people with ALS than controls (p = 0.004), and correlated with LMN score (R = -0.65, p = 0.013), FMF subscore (R = -0.53, p = 0.036), and FMF progression rate (R = 0.52, p = 0.036). CONCLUSIONS: ß-Band spectral power in the sensorimotor cortex reflects clinically evaluated motor impairment in ALS. This technology merits further investigation as a biomarker of progressive functional disability.


Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Electroencephalography , Motor Neurons , Brain , Brain Mapping
7.
Stereotact Funct Neurosurg ; 102(1): 40-54, 2024.
Article En | MEDLINE | ID: mdl-38086346

BACKGROUND: Deep brain stimulation (DBS) is a highly efficient, evidence-based therapy to alleviate symptoms and improve quality of life in movement disorders such as Parkinson's disease, essential tremor, and dystonia, which is also being applied in several psychiatric disorders, such as obsessive-compulsive disorder and depression, when they are otherwise resistant to therapy. SUMMARY: At present, DBS is clinically applied in the so-called open-loop approach, with fixed stimulation parameters, irrespective of the patients' clinical state(s). This approach ignores the brain states or feedback from the central nervous system or peripheral recordings, thus potentially limiting its efficacy and inducing side effects by stimulation of the targeted networks below or above the therapeutic level. KEY MESSAGES: The currently emerging closed-loop (CL) approaches are designed to adapt stimulation parameters to the electrophysiological surrogates of disease symptoms and states. CL-DBS paves the way for adaptive personalized DBS protocols. This review elaborates on the perspectives of the CL technology and discusses its opportunities as well as its potential pitfalls for both clinical and research use in neuropsychiatric disorders.


Deep Brain Stimulation , Mental Disorders , Parkinson Disease , Humans , Deep Brain Stimulation/methods , Quality of Life , Brain , Mental Disorders/therapy , Parkinson Disease/therapy
8.
Hum Brain Mapp ; 45(1): e26536, 2024 Jan.
Article En | MEDLINE | ID: mdl-38087950

Recent electroencephalography (EEG) studies have shown that patterns of brain activity can be used to differentiate amyotrophic lateral sclerosis (ALS) and control groups. These differences can be interrogated by examining EEG microstates, which are distinct, reoccurring topographies of the scalp's electrical potentials. Quantifying the temporal properties of the four canonical microstates can elucidate how the dynamics of functional brain networks are altered in neurological conditions. Here we have analysed the properties of microstates to detect and quantify signal-based abnormality in ALS. High-density resting-state EEG data from 129 people with ALS and 78 HC were recorded longitudinally over a 24-month period. EEG topographies were extracted at instances of peak global field power to identify four microstate classes (labelled A-D) using K-means clustering. Each EEG topography was retrospectively associated with a microstate class based on global map dissimilarity. Changes in microstate properties over the course of the disease were assessed in people with ALS and compared with changes in clinical scores. The topographies of microstate classes remained consistent across participants and conditions. Differences were observed in coverage, occurrence, duration, and transition probabilities between ALS and control groups. The duration of microstate class B and coverage of microstate class C correlated with lower limb functional decline. The transition probabilities A to D, C to B and C to B also correlated with cognitive decline (total ECAS) in those with cognitive and behavioural impairments. Microstate characteristics also significantly changed over the course of the disease. Examining the temporal dependencies in the sequences of microstates revealed that the symmetry and stationarity of transition matrices were increased in people with late-stage ALS. These alterations in the properties of EEG microstates in ALS may reflect abnormalities within the sensory network and higher-order networks. Microstate properties could also prospectively predict symptom progression in those with cognitive impairments.


Amyotrophic Lateral Sclerosis , Cognitive Dysfunction , Humans , Electroencephalography , Retrospective Studies , Brain , Brain Mapping , Cognitive Dysfunction/etiology
9.
Neuroimage Clin ; 41: 103558, 2024.
Article En | MEDLINE | ID: mdl-38142520

Acute strokes can affect heart rate variability (HRV), the mechanisms how are not well understood. We included 42 acute stroke patients (2-7 days after ischemic stroke, mean age 66 years, 16 women). For analysis of HRV, 20 matched controls (mean age 60.7, 10 women) were recruited. HRV was assessed at rest, in a supine position and individual breathing rhythmus for 5 min. The coefficient of variation (VC), the root mean square of successive differences (RMSSD), the powers of low (LF, 0.04-0.14 Hz) and high (HF, 0.15-0.50 Hz) frequency bands were extracted. HRV parameters were z-transformed related to age- and sex-matched normal subjects. Z-values < -1 indicate reduced HRV. Acute stroke lesions were marked on diffusion-weighted images employing MRIcroN and co-registered to a T1-weighted structural volume-dataset. Using independent component analysis (ICA), stroke lesions were related to HRV. Subsequently, we used the ICA-derived lesion pattern as a seed and estimated the connectivity between these brain regions and seven common functional networks, which were obtained from 50 age-matched healthy subjects (mean age 68.9, 27 women). Especially, LF and VC were frequently reduced in patients. ICA revealed one covarying lesion pattern for LF and one similar for VC, predominantly affecting the right hemisphere. Activity in brain areas corresponding to these lesions mainly impact on limbic (r = 0.55 ± 0.08) and salience ventral attention networks (0.61 ± 0.10) in the group with reduced LF power (z-score < -1), but on control and default mode networks in the group with physiological LF power (z-score > -1). No different connectivity could be found for the respective VC groups. Our results suggest that HRV alteration after acute stroke might be due to affecting resting-state brain networks.


Ischemic Stroke , Stroke , Humans , Female , Aged , Heart Rate/physiology , Brain/diagnostic imaging , Stroke/diagnostic imaging
11.
Neurotherapeutics ; 20(6): 1767-1778, 2023 Oct.
Article En | MEDLINE | ID: mdl-37819489

Studies have shown that beta band activity is not tonically elevated but comprises exaggerated phasic bursts of varying durations and magnitudes, for Parkinson's disease (PD) patients. Current methods for detecting beta bursts target a single frequency peak in beta band, potentially ignoring bursts in the wider beta band. In this study, we propose a new robust framework for beta burst identification across wide frequency ranges. Chronic local field potential at-rest recordings were obtained from seven PD patients implanted with Medtronic SenSight™ deep brain stimulation (DBS) electrodes. The proposed method uses wavelet decomposition to compute the time-frequency spectrum and identifies bursts spanning multiple frequency bins by thresholding, offering an additional burst measure, ∆f, that captures the width of a burst in the frequency domain. Analysis included calculating burst duration, magnitude, and ∆f and evaluating the distribution and likelihood of bursts between the low beta (13-20 Hz) and high beta (21-35 Hz). Finally, the results of the analysis were correlated to motor impairment (MDS-UPDRS III) med off scores. We found that low beta bursts with longer durations and larger width in the frequency domain (∆f) were positively correlated, while high beta bursts with longer durations and larger ∆f were negatively correlated with motor impairment. The proposed method, finding clear differences between bursting behavior in high and low beta bands, has clearly demonstrated the importance of considering wide frequency bands for beta burst behavior with implications for closed-loop DBS paradigms.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/diagnosis , Parkinson Disease/therapy , Deep Brain Stimulation/methods , Beta Rhythm/physiology , Rest
12.
Diagnostics (Basel) ; 13(17)2023 Sep 01.
Article En | MEDLINE | ID: mdl-37685374

BACKGROUND AND OBJECTIVES: Obstructive sleep apnea (OSA) is a known risk factor for chronic coronary syndrome (CCS). CCS and OSA are separately associated with significant changes in heart rate variability (HRV). In this proof-of-concept study, we tested whether HRV values are significantly different between OSA patients with concomitant severe CCS, and OSA patients without known CCS. MATERIAL AND METHODS: The study comprised a retrospective assessment of the historical and raw polysomnography (PSG) data of 32 patients who presented to a tertiary university hospital with clinical complaints of OSA. A total of 16 patients (four females, mean age 62.94 ± 2.74 years, mean body mass index (BMI) 31.93 ± 1.65 kg/m2) with OSA (median apnea-hypopnea index (AHI) 39.1 (30.5-70.6)/h) and severe CCS were compared to 16 patients (four females, mean age 62.35 ± 2.06 years, mean BMI 32.19 ± 1.07 kg/m2) with OSA (median AHI 40 (30.6-44.5)/h) but without severe CCS. The short-long-term HRV (in msec) was calculated based on the data of a single-lead electrocardiogram (ECG) provided by one full-night PSG, using the standard deviation of the NN, normal-to-normal intervals (SDNN) and the heart rate variability triangular index (HRVI) methods, and compared between the two groups. RESULTS: A significant reduction (p < 0.05) in both SDNN and HRVI was found in the OSA group with CCS compared to the OSA group without CCS. CONCLUSIONS: Severe CCS has a significant impact on short-long-term HRV in OSA patients. Further studies in OSA patients with less-severe CCS may shed more light onto the involved mechanistic processes. If confirmed in future larger studies, this physiologic metric has the potential to provide a robust surrogate marker of severe CCS in OSA patients.

13.
Front Neurosci ; 17: 1141886, 2023.
Article En | MEDLINE | ID: mdl-37409105

Background: Cochlear implantation (CI) in prelingually deafened children has been shown to be an effective intervention for developing language and reading skill. However, there is a substantial proportion of the children receiving CI who struggle with language and reading. The current study-one of the first to implement electrical source imaging in CI population was designed to identify the neural underpinnings in two groups of CI children with good and poor language and reading skill. Methods: Data using high density electroencephalography (EEG) under a resting state condition was obtained from 75 children, 50 with CIs having good (HL) or poor language skills (LL) and 25 normal hearing (NH) children. We identified coherent sources using dynamic imaging of coherent sources (DICS) and their effective connectivity computing time-frequency causality estimation based on temporal partial directed coherence (TPDC) in the two CI groups compared to a cohort of age and gender matched NH children. Findings: Sources with higher coherence amplitude were observed in three frequency bands (alpha, beta and gamma) for the CI groups when compared to normal hearing children. The two groups of CI children with good (HL) and poor (LL) language ability exhibited not only different cortical and subcortical source profiles but also distinct effective connectivity between them. Additionally, a support vector machine (SVM) algorithm using these sources and their connectivity patterns for each CI group across the three frequency bands was able to predict the language and reading scores with high accuracy. Interpretation: Increased coherence in the CI groups suggest overall that the oscillatory activity in some brain areas become more strongly coupled compared to the NH group. Moreover, the different sources and their connectivity patterns and their association to language and reading skill in both groups, suggest a compensatory adaptation that either facilitated or impeded language and reading development. The neural differences in the two groups of CI children may reflect potential biomarkers for predicting outcome success in CI children.

14.
Front Physiol ; 14: 1199338, 2023.
Article En | MEDLINE | ID: mdl-37465697

The execution of voluntary movements is primarily governed by the cerebral hemisphere contralateral to the moving limb. Previous research indicates that the ipsilateral motor network, comprising the primary motor cortex (M1), supplementary motor area (SMA), and premotor cortex (PM), plays a crucial role in the planning and execution of limb movements. However, the precise functions of this network and its interplay in different task contexts have yet to be fully understood. Twenty healthy right-handed participants (10 females, mean age 26.1 ± 4.6 years) underwent functional MRI scans while performing biceps brachii representations such as bilateral, unilateral flexion, and bilateral flexion-extension. Ipsilateral motor evoked potentials (iMEPs) were obtained from the identical set of participants in a prior study using transcranial magnetic stimulation (TMS) targeting M1 while employing the same motor tasks. The voxel time series was extracted based on the region of interest (M1, SMA, ventral PM and dorsal PM). Directed functinal connectivity was derived from the extracted time series using time-resolved partial directed coherence. We found increased connectivity from left-PMv to both sides M1, as well as right-PMv to both sides SMA, in unilateral flexion compared to bilateral flexion. Connectivity from left M1 to left-PMv, and left-SMA to right-PMd, also increased in both unilateral flexion and bilateral flexion-extension compared to bilateral flexion. However, connectivity between PMv and right-M1 to left-PMd decreased during bilateral flexion-extension compared to unilateral flexion. Additionally, during bilateral flexion-extension, the connectivity from right-M1 to right-SMA had a negative relationship with the area ratio of iMEP in the dominant side. Our results provide corroborating evidence for prior research suggesting that the ipsilateral motor network is implicated in the voluntary movements and underscores its involvement in cognitive processes such as movement planning and coordination. Moreover, ipsilateral connectivity from M1 to SMA on the dominant side can modulate the degree of ipsilateral M1 activation during bilateral antagonistic contraction.

15.
Clin Neurophysiol ; 152: 43-56, 2023 08.
Article En | MEDLINE | ID: mdl-37285747

OBJECTIVE: Subthalamic nucleus (STN) beta activity (13-30 Hz) is the most accepted biomarker for adaptive deep brain stimulation (aDBS) for Parkinson's disease (PD). We hypothesize that different frequencies within the beta range may exhibit distinct temporal dynamics and, as a consequence, different relationships to motor slowing and adaptive stimulation patterns. We aim to highlight the need for an objective method to determine the aDBS feedback signal. METHODS: STN LFPs were recorded in 15 PD patients at rest and while performing a cued motor task. The impact of beta bursts on motor performance was assessed for different beta candidate frequencies: the individual frequency strongest associated with motor slowing, the individual beta peak frequency, the frequency most modulated by movement execution, as well as the entire-, low- and high beta band. How these candidate frequencies differed in their bursting dynamics and theoretical aDBS stimulation patterns was further investigated. RESULTS: The individual motor slowing frequency often differs from the individual beta peak or beta-related movement-modulation frequency. Minimal deviations from a selected target frequency as feedback signal for aDBS leads to a substantial drop in the burst overlapping and in the alignment of the theoretical onset of stimulation triggers (to âˆ¼ 75% for 1 Hz, to âˆ¼ 40% for 3 Hz deviation). CONCLUSIONS: Clinical-temporal dynamics within the beta frequency range are highly diverse and deviating from a reference biomarker frequency can result in altered adaptive stimulation patterns. SIGNIFICANCE: A clinical-neurophysiological interrogation could be helpful to determine the patient-specific feedback signal for aDBS.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Deep Brain Stimulation/methods , Parkinson Disease/diagnosis , Parkinson Disease/therapy , Movement/physiology , Cues
16.
PLoS Biol ; 21(6): e3002140, 2023 06.
Article En | MEDLINE | ID: mdl-37262014

Adapting actions to changing goals and environments is central to intelligent behavior. There is evidence that the basal ganglia play a crucial role in reinforcing or adapting actions depending on their outcome. However, the corresponding electrophysiological correlates in the basal ganglia and the extent to which these causally contribute to action adaptation in humans is unclear. Here, we recorded electrophysiological activity and applied bursts of electrical stimulation to the subthalamic nucleus, a core area of the basal ganglia, in 16 patients with Parkinson's disease (PD) on medication using temporarily externalized deep brain stimulation (DBS) electrodes. Patients as well as 16 age- and gender-matched healthy participants attempted to produce forces as close as possible to a target force to collect a maximum number of points. The target force changed over trials without being explicitly shown on the screen so that participants had to infer target force based on the feedback they received after each movement. Patients and healthy participants were able to adapt their force according to the feedback they received (P < 0.001). At the neural level, decreases in subthalamic beta (13 to 30 Hz) activity reflected poorer outcomes and stronger action adaptation in 2 distinct time windows (Pcluster-corrected < 0.05). Stimulation of the subthalamic nucleus reduced beta activity and led to stronger action adaptation if applied within the time windows when subthalamic activity reflected action outcomes and adaptation (Pcluster-corrected < 0.05). The more the stimulation volume was connected to motor cortex, the stronger was this behavioral effect (Pcorrected = 0.037). These results suggest that dynamic modulation of the subthalamic nucleus and interconnected cortical areas facilitates adaptive behavior.


Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Subthalamic Nucleus/physiology , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Basal Ganglia , Adaptation, Psychological
17.
Cereb Cortex ; 33(13): 8712-8723, 2023 06 20.
Article En | MEDLINE | ID: mdl-37143180

Primary lateral sclerosis (PLS) is a slowly progressing disorder, which is characterized primarily by the degeneration of upper motor neurons (UMNs) in the primary motor area (M1). It is not yet clear how the function of sensorimotor networks beyond M1 are affected by PLS. The aim of this study was to use cortico-muscular coherence (CMC) to characterize the oscillatory drives between cortical regions and muscles during a motor task in PLS and to examine the relationship between CMC and the level of clinical impairment. We recorded EEG and EMG from hand muscles in 16 participants with PLS and 18 controls during a pincer-grip task. In PLS, higher CMC was observed over contralateral-M1 (α- and γ-band) and ipsilateral-M1 (ß-band) compared with controls. Significant correlations between clinically assessed UMN scores and CMC measures showed that higher clinical impairment was associated with lower CMC over contralateral-M1/frontal areas, higher CMC over parietal area, and both higher and lower CMC (in different bands) over ipsilateral-M1. The results suggest an atypical engagement of both contralateral and ipsilateral M1 during motor activity in PLS, indicating the presence of pathogenic and/or adaptive/compensatory alterations in neural activity. The findings demonstrate the potential of CMC for identifying dysfunction within the sensorimotor networks in PLS.


Motor Cortex , Motor Neuron Disease , Humans , Electromyography/methods , Motor Cortex/physiology , Muscle, Skeletal/physiology , Hand
18.
Brain Commun ; 5(2): fcad035, 2023.
Article En | MEDLINE | ID: mdl-36895959

Physiological responses to threat and stress stimuli entrain synchronized neural oscillations among cerebral networks. Network architecture and adaptation may play a critical role in achieving optimal physiological responses, while alteration can lead to mental dysfunction. We reconstructed cortical and sub-cortical source time series from high-density electroencephalography, which were then fed into community architecture analysis. Dynamic alterations were evaluated in terms of flexibility, clustering coefficient and global and local efficiency, as parameters of community allegiance. Transcranial magnetic stimulation was applied over the dorsomedial prefrontal cortex during the time window relevant for physiological threat processing and effective connectivity was computed to test the causality of network dynamics. A theta band-driven community re-organization was evident in key anatomical regions conforming the central executive, salience network and default mode networks during instructed threat processing. Increased network flexibility entrained the physiological responses to threat processing. The effective connectivity analysis showed that information flow differed between theta and alpha bands and were modulated by transcranial magnetic stimulation in salience and default mode networks during threat processing. Theta oscillations drive dynamic community network re-organization during threat processing. Nodal community switches may modulate the directionality of information flow and determine physiological responses relevant to mental health.

19.
Arthritis Res Ther ; 25(1): 47, 2023 03 25.
Article En | MEDLINE | ID: mdl-36964628

BACKGROUND: Optical spectral transmission (OST) is a modern diagnostic modality, able to assess the blood-specific absorption of light transmitted through a tissue, promising quantification of inflammation in the finger and wrist joints of patients with arthritis. To date, there are no adequate data regarding the diagnostic value of OST in the evaluation of inflammatory activity changes, during arthritis follow-up. Objectives of this study were therefore to examine the performance of OST in assessing response to anti-inflammatory therapy in patients with active arthritis and to explore OST associations with clinical, laboratory, and ultrasonographic (US) activity markers. METHODS: 1173 joints of 54 patients with arthritides of the wrist and finger joints were examined by OST before and after oral administration of glucocorticoids (GC), during a disease flare. For the same time-points patients underwent clinical, laboratory, and joint US [grayscale (GSUS), power-Doppler (PDUS)] examinations. The distribution of ΔOST-values between the two time-points was compared with the respective distributions of ΔPDUS and ΔGSUS by Bayesian statistical analyses. Moreover, the diagnostic performance of OST compared to a control group (2508 joints of 114 subjects) was examined by receiver operating characteristics and associations of OST values with clinical, laboratory, and arthrosonographic parameters were evaluated by correlation analyses. RESULTS: OST and US performed similarly in the assessment of inflammatory changes caused by GC (same value-change tendency in 83.2% of the cases). Bayesian statistics revealed no significant differences between ΔOST and ΔPDUS for all 3 examined joint categories (accuracy: metacarpophalangeal (MCP): 68.1%; proximal interphalangeal (PIP): 60.4%; wrists: 50.4%) and between ΔOST and ΔGSUS for MCP and PIP joints (accuracy: 51.1% and 78.7%, respectively). OST diagnostic performance (patients vs. controls) was excellent in both time-points [area under the curve (AUC) before GC=0.883(95%CI=0.83-0.94) and after GC=0.811(95%CI=0.74-0.881); p<0.001]. Furthermore, OST correlated significantly with all examined sonographic activity scores (all; p<0.001) and with swollen joint counts (p<0.01). CONCLUSIONS: OST was able to assess response to therapy in a similar way to joint US and correlated significantly with arthritis activity markers. Therefore, OST has proved to be a valuable tool to assist disease activity monitoring in the examined cohort. TRIAL REGISTRATION: German Registry of Clinical Trials, DRKS00016752.


Arthritis, Rheumatoid , Synovitis , Humans , Arthritis, Rheumatoid/drug therapy , Bayes Theorem , Finger Joint/diagnostic imaging , Follow-Up Studies , Glucocorticoids/therapeutic use , Severity of Illness Index , Synovitis/diagnosis , Ultrasonography , Ultrasonography, Doppler , Wrist Joint/diagnostic imaging
20.
Neurobiol Dis ; 179: 106055, 2023 04.
Article En | MEDLINE | ID: mdl-36849015

Juvenile myoclonic epilepsy (JME) is the most common syndrome within the idiopathic generalized epilepsy spectrum, manifested by myoclonic and generalized tonic-clonic seizures and spike-and-wave discharges (SWDs) on electroencephalography (EEG). Currently, the pathophysiological concepts addressing SWD generation in JME are still incomplete. In this work, we characterize the temporal and spatial organization of functional networks and their dynamic properties as derived from high-density EEG (hdEEG) recordings and MRI in 40 JME patients (25.4 ± 7.6 years, 25 females). The adopted approach allows for the construction of a precise dynamic model of ictal transformation in JME at the cortical and deep brain nuclei source levels. We implement Louvain algorithm to attribute brain regions with similar topological properties to modules during separate time windows before and during SWD generation. Afterwards, we quantify how modular assignments evolve and steer through different states towards the ictal state by measuring characteristics of flexibility and controllability. We find antagonistic dynamics of flexibility and controllability within network modules as they evolve towards and undergo ictal transformation. Prior to SWD generation, we observe concomitantly increasing flexibility (F(1,39) = 25.3, corrected p < 0.001) and decreasing controllability (F(1,39) = 55.3, p < 0.001) within the fronto-parietal module in γ-band. On a step further, during interictal SWDs as compared to preceding time windows, we notice decreasing flexibility (F(1,39) = 11.9, p < 0.001) and increasing controllability (F(1,39) = 10.1, p < 0.001) within the fronto-temporal module in γ-band. During ictal SWDs as compared to prior time windows, we demonstrate significantly decreasing flexibility (F(1,14) = 31.6; p < 0.001) and increasing controllability (F(1,14) = 44.7, p < 0.001) within the basal ganglia module. Furthermore, we show that flexibility and controllability within the fronto-temporal module of the interictal SWDs relate to seizure frequency and cognitive performance in JME patients. Our results demonstrate that detection of network modules and quantification of their dynamic properties is relevant to track the generation of SWDs. The observed flexibility and controllability dynamics reflect the reorganization of de-/synchronized connections and the ability of evolving network modules to reach a seizure-free state, respectively. These findings may advance the elaboration of network-based biomarkers and more targeted therapeutic neuromodulatory approaches in JME.


Myoclonic Epilepsy, Juvenile , Female , Humans , Myoclonic Epilepsy, Juvenile/diagnosis , Myoclonic Epilepsy, Juvenile/drug therapy , Brain/diagnostic imaging , Electroencephalography/methods , Seizures , Basal Ganglia
...